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MARINE ATRCRAPT EXPERIMENTAL ESTABLISHMENT, FELIXSTOWE, SUFFOLK.

INVESTIGATION OF HIGH LENGTH/BEAM RATIO SEAFLANE
HULLS WITH HIGH BEAM LOADINGS

HYDRODYNAMIC STABILITY PART 8

THE STABILITY (ND SPRAY CHARACTERISTICS OF MODED E

by
D,M, RIDLAND, G,I.Mech.B., A.R.Ae,S.

SUMMARY

N In this report results are presented of tests on the hydrodynemic
- characteristics of model E of the series, This model has a length/beam
. ratio of 13 (the forebody being 6 beams in length and the afferbody 7 beams),
. gero forebody warp, an afterbody to forcbody keel angle of 6, and a
- straight transverse atep with a step depth of 0,15 beams,

The tests comprised the determination of longitudinal stability limits
without slipstream at Cap = 2.25 and 2,75, an investigation of spray at theae
loadings, and an assessment of directional stability, & shart discussion of
the results is also included,

Lddendum to M. A B, E. Report No, ¥/Res/22

Figure 10 shﬁ;uld be disregarded, as subsequent measurements
have shown the formula used to be somewhat inaccurate.
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'ﬂ‘ 1., INTRODUCTION -
" In this report results are given of tests on the stability and
: spray characteristics of Model E of the series detailed in Reference 1, a 1list
of which is reproduced in Table I, Full details ere givén in this reference
of the considerations affecting the design of the models, but it may be
mentioned here that Model E has a length/beam ratio of 13 (the forebody being
6 beams in length and the afterbody 7 beams), zero forebody warp, an after=~ i
l body to forebody keel angle of 60, and a straight transverse step with a step K
L depth of 0,15 beams, Figure 1 gives the hull lines of the model and Figure 2
photographs of it, PFull hydrodynamic and serddynamic data relevant to this
model are given in Tebles II and III, The techniques used in the tests and
the presentation of results, together with the reasons for using them, are :
{ considered in References 1 and 2, though a brief summary is given in the next . |
{‘ section,
\

The tests performed included the determination of longitudinal
stability limits at C, = 2,25 and 2,75 without slipstream, of the spray -
characteristics at thes values of Ca s 2nd an assessment of directional
stability for @Ao = 2,75, with the model constrained in roll,

Figures are included showing the limits and there eare a number of
subsidiary diagrams, Where possible results have been presented non-
dimensionally.

. Comparisons of the results obtained with those for other models
i (References 3 to 7) will be made in further reports; consideration is

411 tests were made with one C,G. position, no slipstream, zero
flap a2nd at steady speeds only. The pitching moment of inertia of the model
was 25,02 1Ib, ft.% in all longitudinal stebility tests.

; restricted in this report to factors peculier to Model E, !
T 2, DESCRIPTION OF TESTS {
; _— {
. 2,1, General !
P R

1

| |
|

2,2, Lift

A limited number of runs were performed at constant speed with the
model clear of the water to check that there was no significant variation in
1ift from the values obtained for mrevious models, with which identical wings
were used, these runs being corried out at several elevator settings and keel
attitudes, The resulting curves are given in Figure 3.

2,3, Longitudinal Stability

J Longitudinal stebility tests were made by towing the model from
s the wing tips on the lateral oxis through the centre of gravity, the model
being free in pitch and heave, The value of the elevator setting was
selected before each run, and the model towed at constant speed, The angle ,
of trim was noted in the steady condition, and if the model proved stsble
at the specd selected it was given nose-down disturbances to determine
whether instability could be induced, the amount of disturbance necessary to
| cause instability being in the range O - 8°, The larger emounts of disturbance
{ were recquired near the undisturbed lower limit at high speeds, Stability
\ limits were built up by these methods, the disturbed limits representing the
worst possible case, Tests were carried out with Cp, = 2,25 and 2,75, and
the corresponding trim curves and stability limits are given in Figures 4 - 7. |
The limits for the different values of Ca, ore plotted together in !
Figurcs 8 and 9 for comparison on a Gy base and. the undisturbed lower limits,
) transposed to a draught base by the formula of Reference 1 for the equivalent
wedge, are plotted in Figure 10; Figures 11 and 12 are subsidiery curves
necessary far this transposition.
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When steady porpoising occurred, either with or without disturbance,
the amplitude was noted, amplitude for this purpose being defined as the
difference between the maximum and minimum trims attained in the oscillation,
These amplitudes are plotted in Figures 13 and 14, for the various coases
concerned,

" 244 Spray end Wake Formation

Photographs vwere taken of the spray, from three different
positions, over a range of speeds and with elevators set at ~8°. A number of
these photographs are reproduced in Pigures 17 - 20, They have been used to
determine the projections of the spray envelopes on the plane of symmetry of
the model at the different values of OAo’ and these projections are plotted
in Figure 21, It should be noted that in plotting the projections velocity
spray has in general been ignored,

In additionto the spray photographs, photographs of the wake regim
were taken from two different positions and are reproduced in Figures 15 and
16, These photographs covered a renge of speeds and elevator settings, the
combinations being selected to give the maximum possible variation of wake
formation and position relative to the afterbody in the stable planing region.

2,5. Directional Stability

In the directional stability tests the model was pivoted universally
at the C.G, and then separately constrained in roll, so that it was effectively
free in pitch, yaw end heave, The model was towed from the C,G, and moments
to yaw the model were applied by means of strings attached to the wing tips
and in the same horizontal plane as the ¢,G.

Stecady speed runs were made with the elevators set at 0%, the model
being yawed up to at most 18 degrees and the values of yaw giving equilibrium
determined by the operator by assessment of the direction of the resulting
hydrodynamic moment on the model., The occurrence of very high drag forces at
large angles of yaw at high speeds made it impossible to investigate some
regions, The value of CAo in these tests was 2,75 and the resulting
stability diagram is plotted in Figure 22,

2,6, Blevator Bffectiveness

Curves of elevator effectiveness calculated from the longitudinal
stability diagrems are given in Figures 23 and 2.

3, DISCUSSION OF RESULTS

The 1lift curves (Figure 3) do not vary substantially from those
of the basic model, with which identical wing end tail units were used.

Longitudinal stability without disturbance is good, for this model,
at both values of Ca , used (Rigures k4 and 6. There is, in each case, &
wide stable band extending from zero to take-off speeds, and the unstzble
region ebove the upper limit is very small. The effect of increasing the
loed coefficient from 2,25 to 2,75 is to raise the lower limit by 3/1;.0 at the
high speed end and by sbout 2° at the hump end (Figure 8). The upper limit is
moved up the speed scale, maintaining the same mean attitude, and, at the
higher weight, upper limit instability is almost eliminated.

Longitudinal stebility with disturbance at cAo = 2,25 is good
(Figure 5). The only change which has been wrought by disturbence is the
raising of the lower limit:by only 2° at the high speed end, and this effect
dearezses progressively with speed down to Gy = 7, when undisturbed end

/disturbed
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disturbed limits coincide, At th~ higher weight (C = 2,75) however s
disturbance produces a marked chenge in the limits G'?g,ure 7). The high speed
lower limit is raised 24°, an unstable band appears across the dingrem and the
upper limit unsteble region, although still remeining small, is increased;

Hump speed, which is rather high, remains unaltered by weight
increase, and, apart from a small general increase in attitude (from 941° to
9,7° at the hump) and a kink occurring at high speeds and attitudes, the trim
curves are similar, This kink, which can be seén in the trim curve m = -8° at
Cag = 275 (Figure 6) and to a lesser extent im n = «12°, is possibly due to 4
suction on the afterbody causing an increase in attitudej which is then decreased
by the planing of the afterbody, by spray from thé main step hitting the after-
body or by the dying away of the suction as model draught decreases, In all
regions en increase in load causes an increase in the amplitude of porpoising,
(Figuwres 13 and 14) and at an initially unstable point the amplitude of
porpoising is ihcreased by disturbance, . .

] The two undisturbed lower limits have been transferred to a draught
base ' in Figure 10, The effect of load is to dearease draught for a given

attitude at higher draughts, and this effcct decreases with decreasing draught
until the two limits coincide at d/b = 0,14. It should be noted howcver, that
these effects are very smell being of the order of 0,07 in. in the worst case,

The load coefficient curves (Figures 11 and 12) are used as an
intermediate step in the draught base transposition and will give take-off
speeds if they are extended.to Cao = O, As would be expected the effect of
increased weight is to move ghe whole diagram up the load coefficient scale
while leaving it almost unchanged. in form,

Photographs of the wake with the model undisturbed and steble at
representative speeds and attitudes are given in Figures 15 and 16 respectively,
The position of the af't step relative to the wake is shown in each case and with
these flow conditions various known reactions to disturbance (from the corres-
ponding points @y, Gy on the stability diagrams) cen be associated. Consider-
ing Figure 15, the lower weight case (GAO = 2,25), it will be remembered that
disturbance produced little change in the limits for this weight, Views (a)
end (d) are medium and low attitude, low speed cases respectively, In the
medium attitude case (a), the afterbody can be seen to be planing for about
1 beam forward of the step (the chequer board pattern consists of R squares),
From Figures 4 and 5, (a) is well into the stsble region and is cotipletely
wneaffected by disturbance, Similar remarks apply to case (d); about % besm
of the afterbody forward of the step is planing and, although this point is
Just above the limit, disturbance has no effect on the stability, Photooraphs
(b) end (e¢) are of high and low attitude, moderately high speed cases. In (b)
the afterbody is Just planing oand one might expect to be approaching the two-
step porpoising state; in fact (v) lies 1° below the upper limit and stability
at this point is unchanged by disturbance, In the low attitude vaew (c) the
aft atep is well clear of the wake and instability does result from disturbance,
The lest case (e) is in the mid-planing rerion and, although the afterbody
is cleaxr of the wake, it is not well clear, This point lies well within the
stable band both with and without disturbance, From the cases considered only
the high speed, low attitude one (¢), is rendered unstoble by disturbance and
this is the occasion on which the afterbody - wake clearsnce is the greatest.

. Similar remarks apply to the higher weight case, Figure 16, where
the onset of instability by disturbance occurs in (c), (d) and (e)., The -
actual shape of the wake can be Judged from the photographs generally; it is
narrow, of almost constant cross section at lower attitudes and fairly deep,
The trough can be seen to be filling in on some of the rearmost views,

RESTRICTED | /Spray
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Spray photographs for individual speeds, mainly in the displacement
renge, are shown in Figures 17 - 20, The spray characteristics of this model
are poor and this is most evident at cv = 3 to 4 for both weights, At cv =3 -
in particular the spray strikes the wing leading edge in the lower weight
case, and goes right over the wing in the higher, These poor characteristics
eccrue from the long afterbody, which keeps the attitude low and this in
» turn causes the spray origin to be near the bow, It may be emphasised that

the forebody of this model is identical to that of Model A, ise, it has no

refinements of any kind., The blenk in Figure 20 is due to the camera line
: of sipght being interrupted by spray sufficiently to spoil the picture, In
Figure 21 spray envelopes for both weights have been drsym, The method of
dbtaining these envelopes differs from that of Refercnce 1 in that only the
longitudinal spray disposition has been considered, The profiles used were
taken straight from the side view photographs and a limited parallax error
was accepted, Where this error tended to become large the curves have not
been drawn, It is suggested that the lateral positions of spray peaks con be
Judged qualitatively from the three gquarter vicws if this becomes necessary,
The aim of Figure 21 is to form a convenient comparison.basis and the effect
of incrcased weight on spray in this case can readily be seen to be consider=-
asble, As the mojections are discontinuous beczuse of wing interferencc the
S.M.C, has been indicated to complete the picture,

On_directional stability the effects of weight 5, roll c:ns't:rm‘.,n’t:3
and, elevator @ are small enough to be neglected and, as breaker strips cauge
only the deletion of the high speed pert of the normal directional dispram s
Figure 22 shows completely (for practical purposes) the directiomel stability

« of Model E,
‘v The disgram indicates pmre-hump instobility up to Gy = L. At Op
.‘ . = 4,3 the attachment of the lower part of the wake to the afterbody nesxr the
/ rear step causes a line of unstable cguilibrium, between which and the speed

i axis, there is a region of neutral stebility, Apart from a point of steble
equilibrium at Oy = 7.6, this neutral region extends to toke~off speeds, The

: line of unstable equilibrium just mentioned is terminated by full attachment

: of the wake to the hull side, with the inception of a new line of unstable
equilibrium at ¢ = 9,59, This full attachment of the wake to the hull side
does not produce a violent reaction as might be expected at the higher speeds
under consideration, but is followed by only a moderate tendency to increcase
yow,

Elevator effectiveness (Figures 23 and 24) shows a morked decrease
) with inareased load =7 and 8, but at Gy = 9 this effect almost disappeors

giving virtually the same effectivencess for cAo = 2,25 and 2,75,

4. CONCLUSIONS

The colm water longitudinal stability characteristics of this
model are good in both weight cases, even though the weight effect is
significant, The rough water stability at the lower weight is very good,. but
this perfarmonce deteriorates seriously with increased loading, In spite of
this deterioration howcver, it still remains passable, -

spray cheracteristics, which are directly affected by the long

The
af terbody, are poor and would give trouble with propellers or Jet intakes,
4 but they could be modified by changes in forebody design.

/LIST OF SYMBOLS
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LIST OF SYMBOLS

beam of model
draught

1lift coefficient = L/4p SV2 (L = 1ift, p = air density),

£ e T

velocity coefficient = V/ ,/ ¢b
Ca load coefficient =A_/Wb3 (A= load o woter and
w = weight per unit volume cf water)

Cp_  load coefficient at V=0

Gy 1ongitudinal spray coefficient = */b
Gy lateral spray coefficient = J/b

c, vertical spray coefficient = 2/b

{(x,y,z) co-ordinates of points on spray envelope

- rclative to axes through step point }
S gross wing areo
N v velocity

*K keel attitude
4| elevator setting

‘1/ engle of yaw

ADVANCE DISTRIBUTION LIST

P.D.S.R.EAB 1
A:D.S.R. (& 1%
A.D.S.R, (Records) 1

; P.D.R,D, (&) 1

; R.D.L,3(8) 1
ADo/ARD, (Res) 1
4.D./R.Du8.C.1, 1

; R,D.ie0a2(c) and (a) 1

’:: D.A./ﬁD. 1

; AD./R.D.5GE, 1 .
';; . Dn/R.A.Eo ! . I.'

“] . C‘nSo A. & A'oEoEo 2

i T:PO ’bo /ToIoBo 120

» Action Copy.
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TBIE I
Models for hydrodynemic stab,ility tests

) Model Forebody Afterbody Afterbody-forebodyl Step To determine
' ‘ waryp length keel angle form | effect of
degrees
pef‘rbeam beams ‘ degrees
A 0 5 6 Forebody
warp
A 5 6
L ¢ 5 6
1 g .
3 o
n o
D 0 L 6 5 Q Afterbody
; 20 length
| N
- + .4
E 0 7 6 i
f S
F 0 9 6 3 Y
. G 9 j
R=R
f G 0 5 L Lfterbody
| angle
i A 0 5
4
o H 0 5 8
1
!
/TiBLE II
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TABLE II

MODEL E - HYDRODYNAMIC DATA

| Beam at step (b) | 0.475!

Length of forebody (6b) 2.850°
w | Length of efterbody (7b) 3.325!
Angle between forebody and 6°

: afterbody keels

: ' Forebody deadrise at step 25°
\ Forebody warp (per beam) o°®
i, Afterbody deadrise 30°

(decreasing to 26° at step
over forward LO% of
af terbody length).

Pitching moment of inertia 25,02 1b,ft,2

) / T4BLE III
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TABLE IIT

Model Aerodynemic data

Mainplane

Section
Gross area
Span
sS.M.C.
Aspect ratio
Dihedral )
on 30% spar axis
Sweepback

Wing setting (roost chord to hull datum)

Tailplane

Section
Gross area
Span

Total elevator area

Tailplene setting (root chord to hull datum)

Section
Gross area

Height

Genergl

* C,G, position

distance forward of step point

distance above step point

% % chord point S,M.C.

distance forward of step point
distance above step point

® Tail arm (C,G, to hinge axis)

¥ Height of tailplene root chord L.E. above hull crown

# These distances are mcasured either parallel to or normal

to the hull datum,

RESTRICTED
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6,85 sq, ft.
6,27 ft,
1,09 ft,
5,75

30 0Ot

4° ot

6° 9

R.4.F, 30 (mod.)

1.33 sq. ft,
2.6 £t,
0,72 sq. ft.

20 ot

RoA'oF'o 30

0,80 sq, ft.

114 T4,

0,237 ft.
0,731 £t,

0,277 £t.
1.015 ft,
3,1 ft.

0.72 £+,

Gottingen 436 (mod,)
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FIG.2

PHOTOGRAPHS OF MODEL E
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FIGS.8 & 9.
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